Признаки и последствия радиации и радиационного облучения

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Признаки и последствия радиации и радиационного облучения». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.


Российские и международные стандарты предусматривают определенные нормы радиации. Считается, что при воздействии на организм человека они не смогут нанести вреда. Норма радиации в микрорентген в час – 50 (0,5 микрозиверт в час).

Виды радиационного фона

Ионизирующее излучение (ИИ), взаимодействуя с веществом, становится причиной ионизации атомов и молекул (атом возбуждается и открывается от отдельных электронов из атомных оболочек). Основные виды радиации:

  • Альфа-излучение. Корпускулярное, представленное в виде потока тяжелых положительно заряженных α-частиц. Они тяжелые, их пробег в веществе короткий, поэтому их может задержать бумажный лист и слой омертвевшей кожи.
  • Бета-излучение. Также корпускулярное, представлено в виде потока электронов или позитронов, которые испускаются при радиоактивном β-распаде ядер атомов.
  • Нейтронное. Корпускулярное, представляет собой поток нейтронов, не оказывающий ионизирующего воздействия, но серьезный ионизирующий эффект наблюдается из-за упругого и неупругого рассеяния на ядрах вещества.
  • Гамма- и рентгеновское излучение. Электромагнитные, различаются механизмом возникновения. Рентгеновское способно проникает во все вещества, представлено в виде электромагнитного излучения с длиной волы от 10-12 до 10-7. Гамма-излучение обладает внутриядерным происхождением, возникающим в процессе распада радиоактивных ядер, при взаимодействии быстрых заряженных частиц с веществом и при других обстоятельствах. Обладает высокой проникающей способностью.

Многие родители отказываются от процедуры, полагая, что излучение нeблагоприятно воздействует на детский организм. Но в медицинской практике отмечено достаточное количество случаев, когда процедypa просто необходима для постановки точного диагноза. Кроме этого, Всемирная организация здравоохранения выступает за проведение исследований с помощью рентгеновских аппаратов, когда недоступны или неинформативны другие способы диагностики.

Насколько вреден рентген для детей? На них электромагнитное излучение оказывает то же негативное воздействие, что и на взрослых, вызывая патологии кровеносной системы. Но минимизировать уровень облучения под силу каждому родителю. Прежде чем сделать снимок, необходимо знать некоторые особенности, позволяющие обезопасить малыша от вредного воздействия.

  • Исследование проводить лучше на самом современном оборудовании. Такие аппараты обладают наименьшим излучением, чем старое.
  • Процедypa должна проводиться только под контролем высококвалифицированного специалиста.
  • Во время проведения исследования необходимо использовать специальные защитные средства, которые помогут снизить уровень облучения других органов и тканей. Тело ребенка, кроме того участка, где требуется сделать снимок, на время процедуры должно закрываться. Также нужно попросить ребенка закрыть глаза.

Опасность рентгеновского излучения состоит в том, что действие волн может провоцировать развитие аномалий и формирование новообразований. Среди исследований, которые проводятся с помощью рентгеновских аппаратов, выделяют несколько методов. К ним относятся:

  1. Рентгеноскопия.
  2. Рентгенография.
  3. Линейная томография.
  4. Компьютерная диагностика.
  5. Электрорентгенография.
  6. Флюорография.

Все отличаются не только возможностями диагностики, но и уровнем излучения. Флюорография и электрорентгенография детям не назначаются, так как доза радиации у них значительно выше.

Рентгенография отличается наиболее высоким уровнем излучения. Процедypa проводится только в присутствии родителей, применяются средства защиты из специального материала.

В том случае, когда родители считают, что вред от рентгена достаточно значительный для ребенка, в некоторых случаях допустимо заменить его ультразвуковым исследованием или магнитно-резонансным сканированием.

По закону, каждое диагностическое исследование, связанное с рентгеновским облучением, должно быть зафиксировано в листе учета дозовых нагрузок, который заполняет врач-рентгенолог и вклеивает в вашу амбулаторную карту. Если вы обследуетесь в больнице, то эти цифры врач должен перенести в выписку.

На практике этот закон мало кто соблюдает. В лучшем случае вы сможете найти дозу, которой вас облучили, в заключении к исследованию. В худшем — вообще никогда не узнаете, сколько энергии получили с незримыми лучами. Однако ваше полное право — потребовать от врача рентгенолога информацию о том, сколько составила «эффективная доза облучения» — именно так называется показатель, по которому оценивают вред от рентгена. Эффективная доза облучения измеряется в милли- или микрозивертах — сокращенно «мЗв» или «мкЗв».

Раньше дозы излучения оценивали по специальным таблицам, где были усредненные цифры. Теперь каждый современный рентгеновский аппарат или компьютерный томограф имеют встроенный дозиметр, который сразу после исследования показывает количество зивертов, полученных вами.

Доза излучения зависит от многих факторов: площади тела, которую облучали, жесткости рентгеновских лучей, расстояния до лучевой трубки и, наконец, технических характеристик самого аппарата, на котором проводилось исследование. Эффективная доза, полученная при исследовании одной и той же области тела, например, грудной клетки, может меняться в два и более раза, поэтому постфактум подсчитать, сколько радиации вы получили можно будет лишь приблизительно. Лучше выяснить это сразу, не покидая кабинета.

Смертельная доза облучения в рентгенах

Опасность получения смертельной дозы облучения при проведении рентгенологического исследования отсутствует. Подобное возможно только во время техногенных аварий, либо при продолжительном пребывании в зоне хранения радиоактивных веществ.

Считается, что смертельное количество рентген облучения составляет от 6-7 Зв/час и выше. Однако опасность представляет не только такая высокая доза: регулярное воздействие меньшего количества радиации тоже может привести к проблемам – например, спровоцировать клеточную мутацию.

Читайте также:  Ходатайство о приобщении доказательств: образец, как подать

Доза лучей, полученных организмом за определенный период времени (к примеру, за час) называют дозовой мощностью. Этот показатель рассчитывается, как отношение количества облучения к периоду воздействия, и обозначается Рентгенами в час, Зиверт в час или Грей в час.

Если рассматривать опасные поглощенные количества излучения, то принято считать, что развитие лучевой болезни стартует при дозе в 1 Грей, если она получена за короткий промежуток времени (не более 96 часов). Если доза составила 7-10 Грей, то развивается тяжелая лучевая болезнь со стопроцентной летальностью. При дозе 10-15 Грей гибель человека наступает на протяжении в среднем 20 дней. Если получена доза излучения, превышающая 15 Грей, то летальный исход наблюдается в течение 1-5дней.

Таблица сравнения доз рентген-облучения при компьютерной диагностике и другом воздействии

Воздействие облучения Доза (микрозиверт)
Доза облучения при прицельном снимке на визиографе (GXS-700) 5 мкЗв
Доза облучения при ортопантомограмме зубов (ОПТГ, панорамный снимок) на Kodak 90003D 35 мкЗв
Доза облучения при 3D томографии зубов (КТ) двух челюстей на Kodak 90003D 60 мкЗв
Доза облучения при флюорографии грудной клетки 80 мкЗв
Доза облучения на спиральном томографе 400 мкЗв
Доза облучения на последовательном конвенционном томографе 1000 мкЗв
Максимально допустимая в РФ годовая доза облучения при проведении профилактических медицинских рентгенологических процедур 1000 мкЗв
Доза облучения при трехчасовом перелете на современном авиалайнере 10 мкЗв
Доза облучения при проживание в бетонном или кирпичном доме в течение года 80 мкЗв
Доза облучения при естественном годовом фоновом ионизирующем излучении 2 400 мкЗв
Максимально допустимая средняя годовая доза облучения для работников атомной промышленности в РФ 20 000 мкЗв
Минимальная годовая доза облучения, для которой надежно установлено повышение риска раковых заболеваний 100 000 мкЗв
Легкая степень лучевой болезни 1 000 000 мкЗв
Тяжелая степень лучевой болезни (не выживает 50% облученных) 4 500 000 мкЗв
Абсолютно смертельная доза 7 000 000 мкЗв

Какую процедуру выбрать?

Специалисты, назначая один из видов диагностики, всегда ориентируются на цели, которые подобное исследование поможет решить. При этом не следует забывать, что рентген не желателен беременным и детям. Отказаться от рентген-диагностики сможет только опытный терапевт остеопат либо же мануальный терапевт, которые могут устанавливать диагноз при пальпации.

Выбирая между рентгеном и флюорографией, необходимо учитывать отличия:

  • рентген дает высокую точность;
  • флюорография сильнее облучает;
  • флюорография дает возможность получить снимок легких;
  • рентген делает локальные снимки, фиксирует динамику изменений;
  • рентгеновский снимок делается сразу на специальной пленке;
  • изображение флюорографии отображается сразу на экране, затем делается с него фотография;
  • рентген-снимки дороже флюорографии.

По ряду перечисленных отличий врач решает, какой вид обследования выбрать в конкретной ситуации.

Что такое ионизирующее излучение?

Ионизирующее излучение — это вид энергии, высвобождаемой атомами в форме электромагнитных волн (гамма- или рентгеновское излучение) или частиц (нейтроны, бета или альфа). Спонтанный распад атомов называется радиоактивностью, а избыток возникающей при этом энергии является формой ионизирующего излучения. Нестабильные элементы, образующиеся при распаде и испускающие ионизирующее излучение, называются радионуклидами.

Все радионуклиды уникальным образом идентифицируются по виду испускаемого ими излучения, энергии излучения и периоду полураспада.

Активность, используемая в качестве показателя количества присутствующего радионуклида, выражается в единицах, называемых беккерелями (Бк): один беккерель — это один акт распада в секунду. Период полураспада — это время, необходимое для того, чтобы активность радионуклида в результате распада уменьшилась наполовину от его первоначальной величины. Период полураспада радиоактивного элемента — это время, в течение которого происходит распад половины его атомов. Оно может находиться в диапазоне от долей секунды до миллионов лет (например, период полураспада йода-131 составляет 8 дней, а период полураспада углерода-14 — 5730 лет).

Как радиоактивное ионизирующее излучение воздействует на организм человека?

Радиоактивное излучение запускает механизм выработки свободных радикалов. Их избыток при низком антиоксидантом (защитном) статусе организма приводит к разрушению клеточных компонентов, в том числе к деструкции и сокращению теломеров — концевых участков молекул ДНК. Также процессу окисления подвержены липиды и белки мембран.

В норме организм человека легко переносит диагностические мероприятия и самостоятельно восстанавливается — дополнительно ничего предпринимать не нужно. Вслед за окислительными процессами, вызванными свободными радикалами, начинается восстановление, и ресурсов организма для этого достаточно.

В конце ХХ — начале XXI века был открыт фермент теломеразы (активен в половых, стволовых и онкологических клетках). За его открытие Э. Блэк-Бёрн, К. Грейдер и Дж. Шостак были удостоены Нобелевской премии в 2009 году. Теломераза отвечает за «удлинение» теломеров, это значит что их разрушение нельзя считать необратимым. Однако ученые заметили и другую закономерность: рак и рост онкологической опухоли возможен тогда, когда молекулы ДНК существенно укорочены и повреждены, при этом фермент теломеразы пребывает в активном состоянии. Это своеобразный «сбой» генетической программы, который приводит к опасным последствиям.

В целом, среднестатистический здоровый организм взрослого человека в состоянии восстановиться после облучения, равного 50-100 мЗв в год. При большем систематическом воздействии радиации развивается лучевая болезнь.

Online-консультации врачей

» Консультация вертебролога
» Консультация сурдолога (аудиолога)
» Консультация нейрохирурга
» Консультация педиатра
» Консультация офтальмолога (окулиста)
» Консультация пластического хирурга
» Консультация психоневролога
» Консультация сексолога
» Консультация нарколога
» Консультация уролога
» Консультация стоматолога
» Консультация детского невролога
» Консультация невролога
» Консультация пульмонолога
» Консультация косметолога

Миф№ 4. Рентгеновские лучи могут сделать из человека мутанта и привести к серьезным осложнениям

Руки ученых Марии и Пьера Кюри, исследователей радиоактивности, были покрыты страшными ранами, а всё из-за того, что через эти самые руки прошло около 8 тонн уранита. Конечно, ученые позапрошлого и прошлого столетия не думали ни о какой защите — они даже не надевали перчатки. После рентгенографии с вашей кожей не случится ничего подобного. У вас не возникнет сыпи, зуда, покраснения, боли. Но частые большие дозы рентгеновского излучения, действительно, повышают риск рака и приводят к порокам развития у детей, если действуют на беременную женщину.

Читайте также:  Федеральная инспекция труда

В современных моделях аппаратов для рентгенографии применяются небольшие дозы излучения. Назначая очередное исследование, врач обязательно учитывает все предыдущие и оценивает риски.

Актуальность проблемы. Ионизирующее излучение – это такой вид энергии, которая высвобождается атомами в форме электромагнитных волн или частиц. Человек подвергается воздействию ионизирующих излучений во многих сферах деятельности, поэтому очень важно изучать свойства и влияние их на организм человека, так как они обладают высокой проникающей способностью. Воздействие излучения может быть внутренним или внешним и может происходить различными путями, поэтому стоит обращать внимание на их проникающую способность. Последствия ионизирующего излучения для здоровья бывают различными. Радиационное повреждение тканей и/или органов будет зависеть от полученной дозы облучения или поглощенной дозы, поэтому стоит придерживаться норм и определенных пороговых значений. Изучение особенностей и свойств лучей позволяют избежать неприятностей, которые непосредственно могут возникнуть, при работе с ними и при взаимодействии с тканями и органами человека. Ионизирующее излучение используется как при диагностике, так и при лечении, но для их безопасного применения необходимо учитывать свойства каждого из излучений, которые определяют взаимодействие с организмом.

Цели и задачи исследования. Изучить различные варианты воздействия ионизирующих излучений, их общие и отличительные свойства, дозы, при которых происходит биологическое воздействие, глубину проникновения в ткани, а также чувствительность различных тканей организма при взаимодействии с заряженными частицами.

Материалы и методы исследования. Был проведен анализ взаимодействия некоторых видов ионизирующих излучений, ссылаясь на научную литературу, которая дает возможность изучить в полном объеме теоретические аспекты, касающиеся данной темы. Обзор литературных источников является важной частью анализа, который используется для изучения ионизирующих излучений, применяемых в диагностике и лечении.

По вопросу характеристики и физическим механизмам взаимодействия было рассмотрено учебное пособие «Физические методы визуализации в медицинской диагностике» 2019 г.

Общие принципы диагностики были описаны в методическом пособи Воронежской государственной медицинской академии им. Н. Н. Бурденко.

Много внимания уделено видам ионизирующего излучения и основным понятиям дозиметрии в книге «Электроэнергетика и охрана окружающей среды. Функционирование энергетики в современном мире» в разделе 3, в котором говорится, что важным свойством радиоактивности является ионизирующее излучение.

Полученные результаты.

1. Рассматривая и изучая характеристики видов ионизирующих излучений можно встретить как сходства, так и их отличия. Рентгеновские лучи в отличие от гамма-лучей имеют атомное происхождение, они образуется в возбужденных атомах.

Также у каждого излучения различная скорость частиц, отличаются энергия, длина пробега в воздухе и тканях, плотность ионизации в тканях.

α-излучения представляют собой поток относительно тяжелых частиц (ядер гелия, состоящих из двух протонов и двух нейтронов).

β-излучения – это поток бетта-частиц (электронов и позитронов), обладающих большей проникающей способностью в сравнении с альфа-излучением. Частицы имеют непрерывный энергетический спектр.

γ-излучение имеет внутриядерное происхождение и представляет собой довольно жесткое электромагнитное излучение с длиной волны 10-8–10-11 нм [1].

2. Доза ионизирующего излучения – это величина, используемая для оценки воздействия ионизирующего излучения на любые вещества, ткани и живые организмы.

Поглощенная доза – показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества и определяется отношением поглощенной энергии ионизирующего излучения на массу вещества.

За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр).

1 Гр – (Дж/кг) это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж.

Внесистемной единицей поглощенной дозы является рад. 1 Гр=100 рад.

Видимые нарушения заметны, при воздействии определенных значений доз на организм человека.

До 0,250-1,0 Гр видимых нарушений не наблюдается; легкая степень лучевой болезни от 1,0-2,0 Гр (присутствует несильная тошнота, проходит в тот же день); средняя степень лучевой болезни от 2,0-4,0 Гр (проявляется через 1-2 часа, длится сутки. Рвота, слабость, недомогание); тяжелая степень лучевой болезни от 4,0-6,0 Гр (проявляется через 20-30 минут, многократная рвота, сильное недомогание, температура до 38); более 6,0 Гр-это крайне тяжелая степень лучевой болезни (наблюдается эритема кожи и слизистых, жидкий стул, температура выше 38); 6,0-10,0 Гр — переходная форма, исход непредсказуем; более 10,0 Гр – встречается крайне редко (летальный исход).

3. В клетке нет таких структур, которые не поражались бы при облучении. Клетки и ткани организма человека отличаются высокой ионизирующей чувствительностью. По современным представлениям, гибель клеток вызывается в первую очередь поражением ядерных структур – ДНК и ДНК-мембранного комплекса.

Различают два вида гибели клеток вследствие облучения – интерфазную и митотическую гибель.

Интерфазная гибель – это гибель клетки до вступления ее в фазу митоза, в большинстве случаев в первые час после облучения. Этот тип можно характеризовать расстройством всей метаболической организации клетки.

Митотическая (репродуктивная, пролиферативная) гибель возникает вследствие инактивации клетки, наступающий после облучения и после первого или последующих митозов. Поэтому этот вид гибели, при воздействии облучения в больших дозах может проявится через некоторое время (до нескольких суток) [2].

При облучении в дозах, принятых в лучевой терапии, н во всех клетках создаются условия, ведущие к их гибели.

Читайте также:  Новый Образец Зелёнки На Квартиру

Чувствительность органов и тканей у человека к ионизирующему излучению неодинакова. Это свойство принято называть относительной радиочувствительностью [2].

Более чувствительными к облучению являются кроветворная ткань, железистый аппарат кишечника, эпителий половых желез, кожи, хрусталик глаза. Поэтому вследствие облучения таких органов как селезенка, костный мозг, лимфатические узлы, гонады, тонкая кишка лучевые повреждения проявляются в большей степени.

Далее по степени радиочувствительности эндотелий, фиброзная ткань, паренхима внутренних органов, хрящевая ткань, мышцы, нервная ткань. Такая градация основана на сравнении морфологических проявлений лучевых поражений. Функциональные последствия облучения она отражает не в полной мере. Известно, что изменения функции нервной ткани наступает быстро и даже при относительно малых дозах облучения.

4. Реакции организма на облучение весьма разнообразны и определяются как действующим фактором излучением, так и свойствами самого организма.

Разделение одной и той же суммарной дозы на отдельные фракции и проведение облучения с перерывами ведут к уменьшению лучевого поражения, т.к. процессы восстановления, начинающиеся сразу после облучения, способны хотя бы частично компенсировать возникшее нарушение.

В зависимости от взаимодействия организма с излучением выделяют: внешнее, которое оказывает влияние на организм человека, также внутренне, которое является гораздо опаснее. Его вызывают альфа-, бетта-частицы. Гамма и рентгеновские лучи будут оказывать внешнее облучение.

Выводы.

Ионизирующее излучение широко используется в диагностике и лечении различных заболеваний организма человека. Облучение выше определенных пороговых значений может нарушить функционирование тканей и/или органов и может вызвать острые реакции, такие как радиационные ожоги или острый лучевой синдром, выпадение волос, покраснение кожи. Они будут более сильными, при более высоких дозах и более высокой мощности.

Сравнительный анализ видов ионизирующих излучений (рентгеновские лучи, α-лучи, β-лучи, γ-лучи) и взаимодействие их с организмом показал, как произвести выбор в пользу меньшего проникновения лучей в ткани организма, так как ионизирующая чувствительность у человека значительно высока.

Очень важно во время курса лучевой терапии правильно и регулярно питаться, потребляя достаточное количество калорий и белков и не допуская потери веса. Ведь план лечения и расчет дозы делают исходя из массы тела и объемов человека. При изменении этих параметров необходимо пересматривать весь курс лечения. В рационе человека обязательно должны присутствовать мясо, рыба, яйца, цельное молоко, сыр, бобовые.

Лечащий врач обязательно должен знать о проблемах с аппетитом. Тошнота, апатия, расстройства желудка не делают еду желанной. Но эти неприятные симптомы можно контролировать частым дробным питанием или с помощью препаратов. Если аппетита нет совсем, можно попробовать заменить твердую пищу калорийными напитками: молочными коктейлями, супами-пюре с добавлением протеиновых порошков. Алкогольные напитки разрешается употреблять не во всех случаях. Поэтому по этому вопросу лучше проконсультироваться с врачом.

Нельзя забывать и о воде, рекомендуемый суточный объем составляет 3 л.

В чём опасность радиации?

Рентгеновские лучи расщепляют молекулы на составные части, поэтому под их действием разрушаются оболочки живых клеток, повреждаются ДНК и РНК. Таким образом, опасное воздействие жёсткой рентгеновской радиации связано с гибелью клеток или повреждением генетического кода и мутациями.

В обычных клетках мутации со временем могут стать причиной ракового перерождения, а в половых клетках — повышают вероятность уродств у будущего поколения.

МРТ основана на излучении электромагнитных волн, а УЗИ — на испускании механических колебаний. Ни то ни другое не связано с ионизирующей радиацией. Их вредное действие на организм не доказано.

Ионизирующее облучение особенно опасно для тканей организма, которые интенсивно обновляются или растут. Поэтому в первую очередь от радиации страдают:

  • костный мозг, где происходит образование клеток иммунитета и крови,
  • кожа и слизистые оболочки, в том числе, желудочно-кишечного тракта,
  • ткани плода у беременной женщины.

Особенно чувствительны к облучению дети всех возрастов, так как уровень обмена веществ и скорость клеточного деления у них гораздо выше, чем у взрослых. Дети постоянно растут, что делает их уязвимыми перед радиацией.

Вместе с тем, рентгеновские методы диагностики: флюорография, рентгенография, рентгеноскопия, сцинтиграфия и компьютерная томография широко используются в медицине. Некоторые из нас подставляются под лучи рентгеновского аппарата по собственной инициативе, например, чтобы определить процент поражения лёгких при коронавирусе. Но чаще всего на лучевую диагностику посылает врач.

Самая вредная диагностика

Для сравнения «вредности» различных видов рентгеновских исследований можно воспользоваться средними показателями эффективных доз, приведённых в таблице. Это данные из методических рекомендаций № 0100/1659-07-26, утверждённых Роспотребнадзором в 2007 году. С каждым годом техника совершенствуется и дозовую нагрузку во время исследований удаётся постепенно уменьшать. Возможно, в клиниках, оборудованных новыми аппаратами, вы получите меньшую дозу облучения.

Часть тела Доза мЗв/процедуру
Флюорография цифровая
Грудная клетка 0,05
Органы малого таза 0,3
Рентгенограмма цифровая
Грудная клетка 0,03
Конечности 0,01
Кишечник 0,2
Почки 0,1
Органы малого таза 0,1
Зубы, челюсть 0,02
Молочная железа 0,05
Рентгеноскопия
Кишечник 12
Пищевод, желудок 3,5
Компьютерная томография (КТ)
Грудная клетка 11
Конечности 0,1
Шея 5,0
Органы малого таза 9,5
Голова 2,0
Зубы, челюсть 0,05

Очевидно, что самую высокую лучевую нагрузку можно получить при прохождении рентгеноскопии и компьютерной томографии. В первом случае это связано с длительностью исследования. Рентгеноскопия обычно проводится в течение нескольких минут, а простой рентгеновский снимок делается за доли секунды. Поэтому при динамичном исследовании вы облучаетесь сильнее.


Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *